
1

In this experiment, you will learn all sorts of things that will help you in your Team Project.
It is therefore NOT TO BE MISSED unless you are not well or have unavoidable reasons.
If you do have to miss this Lab, make sure that you catch up another time – you will learn
loads in this one single Lab session.

2

It is important for you to appreciate the intended learning outcome for each Lab session, no
more so than this Lab. I will be giving you four lectures on the applications of electronics in
the next few weeks. They are entitled: Drive, Sense, Link and Source. In this Lab, you
will experience the first three topics.
Furthermore, you will be using Python to control things that are physical. Don’t worry if you
are not good in Python programming yet. You will be learning through examples.
In this experiment, you will be using the hardware board known as the Pyboard which at its
heart is a processor chip. (Note that this is different from the Raspberry Pi.) This is a fully
functioning computer on a small printed circuit board, with lots of different built-in
peripherals (meaning it has all sort of electronics NOT part of processor, but would help the
processor to do useful things). A microprocessor designed to be embedded inside a piece
of equipment, instead of going into a computer system, is called a microcontroller. The one
we use is based on the ARM architecture, which is the same one used in almost all smart
phones and tablets. The microcontroller chip is designed and made by ST Micro, a
European chip company.
The board we use, the Pyboard, has one distinctive feature. It has integrated into the
board a fully working Python interpreter. The beauty of this is: you plug a terminal into
the board via the USB cable, you can “speak Python” to the processor right away!

3

From now on, including the Team Project, you will be writing python programs for the
Pyboard on your BB. For Lab 4, you need to pick up the following list of components
from Peter’s Bench in the Lab:
1. TB6612 dual motor driver chip
2. Two light-emitting diodes (LED) in red and green
3. A USB cable
4. An infra-red obstacle sensor module
5. A Hall Effect sensor module
6. A Bluetooth-UART module
7. A small fridge magnet
8. USB cable
9. Two motors mounted on a chassis with attached cable
10. One ten-ways male-female ribbon cable to connect PyBoard to breadboard
11. One servo-motor
For Mac users, linking between your computer and the PyBoard is easy. Plug in the
USB cable and open the ”terminal.app” program.
Enter the command:

screen /dev/tty.usb*
and the REPL prompt >>> will appear in the terminal window.
For Windows users, it is more complicated ….

4

In order to “talk” to the Pyboard, you must run a “terminal emulation” program on your host
computer, which can be an Apple Mac or a PC. This program simply read the keys you
type on the computer as ASCII characters, and send them to the PyBoard via the USB
cable. At the same time, it takes the ASCII characters from the PyBoard, and send them to
your screen on the computer.

Follow the instruction above, and seek help immediately if you are stuck. You cannot do
anything else until you get through this stage where you are talking to the PyBoard on your
computer.

5

Once everything is working and you are running the terminal program correctly, you will
see a welcome message from me. This is followed by the “prompt” message: >>>.
This prompt basically says that Micropython (a version of python designed for small
microncontroller with limited memory resources) is now running on the Pyboard waiting for
you to type in python codes.
It is important for your to appreciate that everything you do now is ON THE PYBOARD.
Your PC is merely acting as a dumb terminal, sending characters you type to the Pyboard,
and displaying characters from the Pyboard on your screen. Your computer does not do
anything intelligent at all! The Pyboard is functioning as a standalone computer, including
handling all the python codes you type in.
When you first power up the Pyboard, it performs a start up sequence known as
bootstraping booting for short). This includes running the program boot.py which is stored
in the on-chip flash memory. This appears as a USB drive to your PC. You can edit this
boot.py file as any other files on the drive.
The file boot.py has very simple codes, which tells it what to do next. In our case, it runs
the program main.py which, at the moment, do nothing but print a message.

6

This page is about recovery from errors. Read carefully – failing to do so may
waste you lots of time!

Sometimes if you make a mistake, the Pyboard may fail to respond. What do
you next? There are three levels of action as explained above.

1. Interrupting Pyboard by pressing CTRL-C is the most useful action. This
tells the Pyboard to stop whatever it is doing and return control to you. If
this works, you should see >>> on the terminal screen. Typically you
would then edit your Python program, correct your mistakes, and restart
by typing CTRL-D.

2. Press the RESET switch on Pyboard. So doing will loose your USB
terminal connection and may even corrupt files. NEVER press RESET
switch while the LEDs on the Pyboard are flashing.

3. Remove the power to Pyboard.

7

Before you start the experiment properly, let us try to write some simple
python code interactively with the Pyboard. Enter the code above in
response to the REPL prompt >>>.
What we are doing here is just to flash the LED on the Pyboard. Experiment
with this so that you know how to control all four colour LEDs.
Next, you should learn to use the user switch on the Pyboard and check
whether it has been pressed or not. To do this, you need to create a switch
object “sw” with:

sw = pyb.Switch()

Thereafter, sw() function just returns either 0 (not pressed) or 1 (pressed).
This is a useful feature for later use in the Team Project.

8

9

We will now start to use the Pyboard to do something useful. In this task, you will use
the Pyboard (and its microcontroller) to send two digital output signals to drive a red and
a yellow LED on the breadboard (not the onboard ones).
The circuit you need to build on the breadboard is shown above. You are driving the
LEDs directly from Pin Y9 and Y10, which are names given to the pins on the board.
(They have different names on the microcontroller chip. But we will use the board name
in this Lab.)
An LED (light emitting diode) is a component which will only conduct current in one
direction, as indicated by the symbol. That is, current will flow in the direction of the
triangle as if it is an arrow. Therefore, for the LED to work, the terminal with the + sign
must be at a higher voltage than the terminal with the horizontal line.
When a diode has a positive voltage VF at the +ve terminal (with the name “anode”)
relative to the –ve terminal (named “cathode), and current is following through the diode,
we say that the diode is forward biased. If you reverse the voltage (so that –ve terminal
is at a higher potential than the +ver terminal), we say that the diode is reverse biased.
VF needs to be above a minimum threshold before the diode is conducting current. This
threshold is known as the forward or threshold voltage. For these LEDs, they are around
2V. Since the digital output Y9 and Y10 are around 3.3V when it is high, the LEDs will
have 4mA current flowing through when they are ON.
We will heavily rely on libraries that come with the Pyboard. The statement “from pyb
import Pin” states that we will be using functions in the Pin Class library in pyb.

10

LED is a type of diode component, and it emits light when it is forward
biased, meaning its voltage is above a threshold.
A diode has a current vs voltage characteristic like this:
For silicon diodes, the threshold voltage is around 0.7V.
For LEDs, it varies from 1.5V up to a few volts.
If the voltage across the diode is below the
threshold, or if the voltage is reversed, the diode
will not light up.

If you keep increasing the reverse voltage on the diode, there comes a point,
at VZ, when suddenly the diode conducts again in the reverse direction. This
is known as the breakdown voltage.
For normal diode, it is not good to get to this stage. However, there is a class
of diodes designed to operate at this breakdown region. They are known as
Zener diodes.
In the program shown above, we loop forever using the “while” statement.
You can always break out from an infinite loop running on the Pyboard by
typing CTRL-C.
We use two library classes here: Pin and Timer. To find out more about
these library classes, visit the links:
https://micropython.org/doc/module/pyb/Pin
https://micropython.org/doc/module/pyb/Timer

11

In order to drive a motor, which takes lots of current, we need to provide an interface circuit
between the microcontroller chip (and its pins) and the motor. For this, we use a motor
driver chip, TB6612, which is a small board with a chip in the middle.
Connect the power and ground wires on the breadboard, and then connect Y9 and Y10,
with the LEDs stay connected as previously, to the Pyboard. In this way, you can see the
state of Y9 and Y10 with the LEDs.
PWMA pin is connected to pin X1. X1 will be programmed to produce a pulse-width
modulation (PWM) signal. This is a signal that produce a positive-going pulse periodically
(say at 1kHz). The width of the pulse is variable. In this way, the average voltage of the
signal is directly proportional to the duty cycle of the PWM signal:

average_voltage = VM x duty cycle = VM x pulse width/ period
The motor is connect to the two output pins AO1 and AO2.

12

The way the TB6612 chip works is shown in the table here. The shaded entry is what is
being set up with the sample Python program.
If you drive AIN1 high, and AIN2 low, then the PWM signal from X1 to PWM pin will
determine the speed of the motor. This is achieved by having the outputs AO1 high and
AO1 low for part of the period of the PWM signal.
The Python code shown here is quite simple and obvious. There are three lines that
provide the PWM signals:

tim = Timer(2, freq = 1000) # This produces a 1000Hz clock
ch = tim.channel(1, Timer.PWM, pin = motor)

This code programs the timer channel to provide a PWM signal.
Finally,

ch.pulse_width_percent(50)
This generates a PWM signal with 50% duty cycle on the pin object “motor” which has
been assigned to X1 previously.
You can now use the ch.pulse_width_percent() function to change the speed of the
motor, 0% is stop, and 100% is full speed. Try this yourself.

13

So far we have only been OUTPUTTING signals from the Pyboard – performing DRIVE
function.
Here we are performing SENSE function. This task is about sensing the position of the
potentiometer (with a knob).

The potentiometer is connect to 3.3V at one end, and GND at the other end. As you turn
the black knob, the voltage at the wiper output of the potentiometer varies between 0V and
3.3V.
This signal is fed to X8 pin of the Pyboard (already connected). An internal ADC device
convert the analogue signal to a digital signal between 0 and 4095 (why?).

14

This task is for you to complete on your own. It is intended to let you test yourself, so that
you are sure that you have understood tasks 1 to 3. If you take too long on this, consult the
solution in the “solution” folder.

15

This another SENSE task. We have two sensors: one to sense obstacle via emitting an
infrared signal using one infrared diode, and detect the presence or absence of an echo
signal back using another infrared diode. It then compares the echo signal with an
adjustable threshold (using the blue potentiometer and a screwdriver). It then sends a
digital signal to pin X9 on the Pyboard.
The second sensor measures magnetic field using a detector called Hall Effect sensor. We
will consider this later in the lecture. For now, you can test this with the magnet provided.
Note that both sensors have an output that is normally a logical ‘1’, and they go low, or
logical ‘0’ when activated.
Make sure that you understand the program here.

16

The intention for this task is for you to understand how a single digital signal
could be used to convey text information in the form of an ASCII code. Here
is the ASCII table again for you reference. Make sure you understand the
digital waveform before moving on.
Note that in Python, ord() is a built-in function known as “ordinal”.
ord(‘#’) returns the ASCII numerical value of the character ‘#’, which is 35.
So ord(‘A’) returns a value of 65.

17

Now you should understand the idea of using serial data format to send and receive
ASCII text characters. The serial interface is called UART. There are a number of
hardware UART interfaces in the microcontroller chip.
What we want to do now is to connect a UART on the Pyboard to a Bluetooth module
(known as “Bluefruit UART friend”.
Bluetooth is a wireless standard used for short distance connection between two
electronic widgets. For example, your notebook computer could be connected to a
wireless mouse through Bluetooth. The distance is usually limited to a few metres.
In this task, we want to use the Pyboard’s UART interface hardware to connect to the
Bluefruit module (shown above) to link with your iPhone or Android phone. (Sorry –
won’t work on a Window phone.)
The Tx and Rx pin on the module are obvious. The two signals RTS (ready to send)
and CTS (clear to send) signals are used for checking whether either end is ready to
send or receive another character. These are known as HANDSHAKE or FLOW-
CONTROL SIGNALS. Both signals are low active (i.e. low voltage means True or
logical ‘1’).
We connect CTS to ground because Pyboard is so fast that it is already ready to
receive another character from the Bluefruit board.
You need to download the mobile app for Android or iPhone in order to receive text
messages from the Pyboard and your program.
You may also need to upgrade the firmware on the Bluefruit UAR Friend module.
(Run the App on your phone, pair with the board and you can check on the setting
button.)

18

This task is most important. It teaches you how to use your mobile device to
control the Pyboard remotely, which in turn controls the robotic car. This
exercise is very simple. The program currently only detects a key click down
then up, i.e. press then release.

19

This final task is another challenge for you. You are required to combine task 8
and task 2, so that you use the mobile phone keypad with the Adafruit app, via
the Bluetooth interface module, communicate (link) with the Pyboard and
control the speed of the motor in both forward and reverse directions.
Again if you take too long to do this, the solution is available.

20

This is an optional task to show you how to use Pyboard to drive servo motors.
We have not done servo motors in lectures yet. The idea is actually very simple
– you can instruct a motor’s arm to move to any angle you specify within two
limits. Typically, the limits could be ±60∘.
You can download the servo motor datasheet from the Course webpage. The
connection of the servo motor is straight forward – it has only three wires as
shown below:

Pyboard is designed to connect directly to a maximum of four servo motors on
X1, X2, X3 or X4. Micropython as a Servo Class which makes controlling the
angle of the motor trivial, as explained in the slide above.

